Exercises

Optimization with side constraints

Exercise 1. Find all possible extrema (i.e. all points that satisfy the necessary Lagrange condition for extrema) of the following optimization problems:
(a)

$$
\begin{aligned}
& \max f\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}+2 x_{2}+1000 \\
& \text { s.t. } x_{1}+x_{2}=80
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \max f(x, y, z)=x+y+z \\
& \text { s.t. } x y z-8=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \max f(x, y)=5 x+8 y \\
& \text { s.t. } x y=1000
\end{aligned}
$$

Exercise 2. A company has two different, independent production lines. The profit of production line i is a function of the budget spent for the production line x_{i} :

$$
P_{1}\left(x_{1}\right)=120 \sqrt{x_{1}} \quad P_{2}\left(x_{2}\right)=160 \sqrt{x_{2}} .
$$

The total profit is $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{P}_{1}\left(\mathrm{x}_{1}\right)+\mathrm{P}_{2}\left(\mathrm{x}_{2}\right)$. Assume the company has total budget of 4 million euro.

- Compute the optimal distribution of the budget between the production lines such that the profit is maximal. Use the Lagrange function (you may assume that every possible extremum is a maximum).
- The Lagrange multiplier λ can be interpreted as the (approximative) change of the objective function if the right hand side of the corresponding side constraint is altered by 1 , i.e. if the right hand side changes by Δ then the objective function changes by $-\lambda \cdot \Delta$.
Assume the budget is reduced to 3.9 million: How does the profit change approximatively?

